Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 610
Filtrar
1.
Diabetes Res Clin Pract ; 209: 111605, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38453058

RESUMEN

BACKGROUND: The persistent presence of inflammation is a recognized pathogenic mechanisms of diabetic foot ulcers (DFUs). We aimed to investigate the expression of PLIN1 in tissues from DFU patients and assess its potential association with inflammation-induced damage. METHODS: We performed transcriptome sequencing and correlation analysis of the foot skin from patients with or without DFUs. Additionally, we examined the correlation between PLIN1 and related inflammatory indicators by analyzing PLIN1 expression in tissue and serum samples and through high-glucose stimulation of keratinocytes (HaCaT cells). RESULTS: PLIN1 is upregulated in the tissue and serum from DFU patients. Additionally, PLIN1 shows a positive correlation with leukocytes, neutrophils, monocytes, C-reactive protein, and procalcitonin in the serum, as well as IL-1ß and TNF-α in the tissues. Experiments with Cells demonstrated that reduced expression of PLIN1 leads to significantly decreased expression of iNOS, IL-1ß, IL-6, IL-18, and TNF-α. PLIN1 may mediate wound inflammatory damage through the NF-κB signaling pathway. CONCLUSION: Our findings suggest that PLIN1 mediates the inflammatory damage in DFU, offering new prospects for the treatment of DFU.


Asunto(s)
Diabetes Mellitus , Pie Diabético , Humanos , Pie Diabético/genética , Pie Diabético/patología , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo , Piel/patología , Inflamación/metabolismo , Queratinocitos/metabolismo , Diabetes Mellitus/metabolismo , Perilipina-1/metabolismo
2.
Cardiovasc Res ; 120(3): 237-248, 2024 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-38214891

RESUMEN

The function of perilipin 1 in human metabolism was recently highlighted by the description of PLIN1 variants associated with various pathologies. These include severe familial partial lipodystrophy and early onset acute coronary syndrome. Additionally, certain variants have been reported to have a protective effect on cardiovascular diseases. The role of this protein remains controversial in mice and variant interpretation in humans is still conflicting. This literature review has two primary objectives (i) to clarify the function of the PLIN1 gene in lipid metabolism and atherosclerosis by examining functional studies performed in cells (adipocytes) and mice and (ii) to understand the impact of PLIN1 variants identified in humans based on the variant's location within the protein and the type of variant (missense or frameshift). To achieve these objectives, we conducted an extensive analysis of the relevant literature on perilipin 1, its function in cellular models and mice, and the consequences of its mutations in humans. We also utilized bioinformatics tools and consulted the Human Genetics Cardiovascular Disease Knowledge Portal to enhance the pathogenicity assessment of PLIN1 missense variants.


Asunto(s)
Aterosclerosis , Lipodistrofia Parcial Familiar , Animales , Humanos , Ratones , Aterosclerosis/genética , Metabolismo de los Lípidos/genética , Lipodistrofia Parcial Familiar/genética , Mutación , Perilipina-1/genética , Perilipina-1/metabolismo , Perilipina-2/genética , Perilipina-2/metabolismo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo
3.
Nat Commun ; 15(1): 186, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38167864

RESUMEN

Adipose tissue stores triacylglycerol (TAG) in lipid droplets (LD) and release fatty acids upon lipolysis during energy shortage. We identify ApoL6 as a LD-associated protein mainly found in adipose tissue, specifically in adipocytes. ApoL6 expression is low during fasting but induced upon feeding. ApoL6 knockdown results in smaller LD with lower TAG content in adipocytes, while ApoL6 overexpression causes larger LD with higher TAG content. We show that the ApoL6 affects adipocytes through inhibition of lipolysis. While ApoL6, Perilipin 1 (Plin1), and HSL can form a complex on LD, C-terminal ApoL6 directly interacts with N-terminal Plin1 to prevent Plin1 binding to HSL, to inhibit lipolysis. Thus, ApoL6 ablation decreases white adipose tissue mass, protecting mice from diet-induced obesity, while ApoL6 overexpression in adipose brings obesity and insulin resistance, making ApoL6 a potential future target against obesity and diabetes.


Asunto(s)
Gotas Lipídicas , Lipólisis , Animales , Ratones , Gotas Lipídicas/metabolismo , Tejido Adiposo/metabolismo , Adipocitos/metabolismo , Obesidad/genética , Obesidad/metabolismo , Perilipina-1/genética , Perilipina-1/metabolismo
4.
Nutr Res ; 121: 95-107, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38056034

RESUMEN

Tumor necrosis factor α (TNFα), an inflammatory cytokine, induces lipolysis and increases circulating concentrations of free fatty acids. In addition, TNFα is the first adipokine produced by adipose tissue in obesity, contributing to obesity-associated metabolic disease. Given that benzyl isothiocyanate (BITC) is a well-known anti-inflammatory agent, we hypothesized that BITC can ameliorate TNFα-induced lipolysis and investigated the working mechanisms involved. We first challenged 3T3-L1 adipocytes with TNFα to induce lipolysis, which was confirmed by increased glycerol release, decreased protein expression of peroxisome proliferator-activated receptor γ (PPARγ) and perilipin 1 (PLIN1), and increased phosphorylation of ERK, protein kinase A (PKA), and hormone-sensitive lipase (HSL). However, inhibition of ERK or PKA significantly attenuated the lipolytic activity of TNFα. Meanwhile, pretreatment with BITC significantly ameliorated the lipolytic activity of TNFα; the TNFα-induced phosphorylation of ERK, PKA, and HSL; the TNFα-induced ubiquitination of PPARγ; the TNFα-induced decrease in PPARγ nuclear protein binding to PPAR response element; and the TNFα-induced decrease in PLIN1 protein expression. Our results indicate that BITC ameliorates TNFα-induced lipolysis by inhibiting the ERK/PKA/HSL signaling pathway, preventing PPARγ proteasomal degradation, and maintaining PLIN1 protein expression.


Asunto(s)
Esterol Esterasa , Factor de Necrosis Tumoral alfa , Animales , Ratones , Factor de Necrosis Tumoral alfa/farmacología , Factor de Necrosis Tumoral alfa/metabolismo , Esterol Esterasa/metabolismo , Lipólisis , Células 3T3-L1 , PPAR gamma/metabolismo , Transducción de Señal , Fosforilación , Adipocitos/metabolismo , Obesidad/metabolismo , Perilipina-1/metabolismo
5.
J Biol Chem ; 299(12): 105384, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37898398

RESUMEN

Perilipins (PLINs) constitute an evolutionarily conserved family of proteins that specifically associate with the surface of lipid droplets (LDs). These proteins function in LD biogenesis and lipolysis and help to stabilize the surface of LDs. PLINs are typically composed of three different protein domains. They share an N-terminal PAT domain of unknown structure and function, a central region containing 11-mer repeats that form amphipathic helices, and a C-terminal domain that adopts a 4-helix bundle structure. How exactly these three distinct domains contribute to PLIN function remains to be determined. Here, we show that the N-terminal PAT domain of PLIN3 binds diacylglycerol (DAG), the precursor to triacylglycerol, a major storage lipid of LDs. PLIN3 and its PAT domain alone bind liposomes with micromolar affinity and PLIN3 binds artificial LDs containing low concentrations of DAG with nanomolar affinity. The PAT domain of PLIN3 is predicted to adopt an amphipathic triangular shaped structure. In silico ligand docking indicates that DAG binds to one of the highly curved regions within this domain. A conserved aspartic acid residue in the PAT domain, E86, is predicted to interact with DAG, and we found that its substitution abrogates high affinity binding of DAG as well as DAG-stimulated association with liposome and artificial LDs. These results indicate that the PAT domain of PLINs harbor specific lipid-binding properties that are important for targeting these proteins to the surface of LDs and to ER membrane domains enriched in DAG to promote LD formation.


Asunto(s)
Diglicéridos , Perilipina-3 , Diglicéridos/metabolismo , Gotas Lipídicas/metabolismo , Lipólisis , Perilipina-1 , Perilipina-2/metabolismo , Perilipina-3/química , Perilipina-3/metabolismo , Dominios Proteicos , Proteínas/metabolismo , Humanos
6.
Eur Rev Med Pharmacol Sci ; 27(19): 9355-9362, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37843309

RESUMEN

OBJECTIVE: The PERILIPIN1 (PLIN1) gene encodes an adipocyte-associated protein that modulates weight. The objective was to evaluate the role of the rs2289487 genetic variant of the PLIN1 gene on weight loss and glucose metabolism secondary to a partial meal replacement (pMR) hypocaloric diet. PATIENTS AND METHODS: We conducted an interventional study in 111 postmenopausal obese females with body mass index (BMI) > 35 kg/m2. The subjects received two intakes per day of a normocaloric hyperproteic formula for 12 weeks. RESULTS: After the pMR diet, body weight, (BMI), fat mass, waist circumference, fasting insulin levels and HOMA-IR decreased in both genotype groups. The improvements in these parameters were higher in C allele carriers than in subjects with TT genotype. The percentage of patients who achieved 7.5% weight loss was higher in the C carriers (57.4% vs. 27.6%), (adjusted Odds Ratio 2.14, 95% CI = 1.33-9.40; p = 0.02). The decrease in the percentage of diabetes mellitus or impaired fasting glucose decrease was statistically significant in C allele carriers (30.2% vs. 18.9%; p = 0.01) (OR 0.54, 95% CI = 0.22-0.78; p = 0.02). CONCLUSIONS: The C allele of rs2289487 predicts the magnitude of weight loss resulting from a pMR diet. These adiposity improvements produce a better improvement in insulin resistance and the percentage of impaired glucose metabolism.


Asunto(s)
Resistencia a la Insulina , Obesidad , Femenino , Humanos , Dieta Reductora/métodos , Glucosa , Resistencia a la Insulina/genética , Obesidad/metabolismo , Perilipina-1/genética , Polimorfismo de Nucleótido Simple , Posmenopausia , Pérdida de Peso/genética
7.
J Innate Immun ; 15(1): 697-708, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37742619

RESUMEN

Lipid droplets (LDs) are highly dynamic intracellular organelles, which are involved in lots of biological processes. However, the dynamic morphogenesis and functions of intracellular LDs during persistent innate immune responses remain obscure. In this study, we induce long-term systemic immune activation in Drosophila through genetic manipulation. Then, the dynamic pattern of LDs is traced in the Drosophila fat body. We find that deficiency of Plin1, a key regulator of LDs' reconfiguration, blocks LDs minimization at the initial stage of immune hyperactivation but enhances LDs breakdown at the later stage of sustained immune activation via recruiting the lipase Brummer (Bmm, homologous to human ATGL). The high wasting in LDs shortens the lifespan of flies with high-energy-cost immune hyperactivation. Therefore, these results suggest a critical function of LDs during long-term immune activation and provide a potential treatment for the resolution of persistent inflammation.


Asunto(s)
Drosophila , Lipólisis , Animales , Humanos , Lipólisis/fisiología , Perilipina-1/metabolismo , Metabolismo de los Lípidos , Gotas Lipídicas/metabolismo
8.
Adipocyte ; 12(1): 2252711, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37649225

RESUMEN

Bone marrow adipocytes (BMAds) are not just passive fillers inside the bone marrow compartment but respond to various metabolic changes. Assessment of those responses requires evaluation of the number of BMAds and their morphology for which laborious and error-prone manual histological analysis remains the most widely used method. Here, we report an alternative image analysis strategy to semi-automatically quantitate and analyse the morphology of BMAds in histological bone sections. Decalcified, formalin-fixed paraffin-embedded histological sections of long bones of Sprague-Dawley rats were stained with either haematoxylin and eosin (HE) or by immunofluorescent staining for adipocyte-specific protein perilipin-1 (PLIN1). ImageJ-based commands were constructed to detect BMAds sized 200 µm2 or larger from standardized 1 mm2 analysis regions by either classifying the background colour (HE) or the positive and circular PLIN1 fluorescent signal. Semi-automated quantitation strongly correlated with independent, single-blinded manual counts regardless of the staining method (HE-based: r=0.85, p<0.001; PLIN1 based: r=0.95, p<0.001). The detection error was higher in HE-stained sections than in PLIN1-stained sections (14% versus 5%, respectively; p<0.001), which was due to false-positive detections of unstained adipocyte-like circular structures. In our dataset, the total adiposity area from standardised ROIs in PLIN-1-stained sections correlated with that in whole-bone sections (r=0.60, p=0.02).


Asunto(s)
Médula Ósea , Huesos , Ratas , Animales , Ratas Sprague-Dawley , Perilipina-1 , Adipocitos , Eosina Amarillenta-(YS)
9.
Nat Commun ; 14(1): 3204, 2023 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-37268630

RESUMEN

Lipid droplets (LDs) are dynamic organelles that contain an oil core mainly composed of triglycerides (TAG) that is surrounded by a phospholipid monolayer and LD-associated proteins called perilipins (PLINs). During LD biogenesis, perilipin 3 (PLIN3) is recruited to nascent LDs as they emerge from the endoplasmic reticulum. Here, we analyze how lipid composition affects PLIN3 recruitment to membrane bilayers and LDs, and the structural changes that occur upon membrane binding. We find that the TAG precursors phosphatidic acid and diacylglycerol (DAG) recruit PLIN3 to membrane bilayers and define an expanded Perilipin-ADRP-Tip47 (PAT) domain that preferentially binds DAG-enriched membranes. Membrane binding induces a disorder to order transition of alpha helices within the PAT domain and 11-mer repeats, with intramolecular distance measurements consistent with the expanded PAT domain adopting a folded but dynamic structure upon membrane binding. In cells, PLIN3 is recruited to DAG-enriched ER membranes, and this requires both the PAT domain and 11-mer repeats. This provides molecular details of PLIN3 recruitment to nascent LDs and identifies a function of the PAT domain of PLIN3 in DAG binding.


Asunto(s)
Diglicéridos , Perilipina-3 , Diglicéridos/metabolismo , Retículo Endoplásmico/metabolismo , Gotas Lipídicas/metabolismo , Metabolismo de los Lípidos/fisiología , Perilipina-1/metabolismo , Perilipina-3/metabolismo , Triglicéridos/metabolismo
10.
Eur J Appl Physiol ; 123(12): 2771-2778, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37368137

RESUMEN

PURPOSE: Smaller lipid droplet morphology and GLUT 4 protein expression have been associated with greater muscle oxidative capacity and glucose uptake, respectively. The main purpose of this study was to determine the effect of an acute long-duration exercise bout on skeletal muscle lipid droplet morphology, GLUT4, perilipin 3, and perilipin 5 expressions. METHODS: Twenty healthy men (age 24.0 ± 1.0 years, BMI 23.6 ± 0.4 kg/m2) were recruited for the study. The participants were subjected to an acute bout of exercise on a cycle ergometer at 50% VO2max until they reached a total energy expenditure of 650 kcal. The study was conducted after an overnight fast. Vastus lateralis muscle biopsies were obtained before and immediately after exercise for immunohistochemical analysis to determine lipid, perilipin 3, perilipin 5, and GLUT4 protein contents while GLUT 4 mRNA was quantified using RT-qPCR. RESULTS: Lipid droplet size decreased whereas total intramyocellular lipid content tended to reduce (p = 0.07) after an acute bout of endurance exercise. The density of smaller lipid droplets in the peripheral sarcoplasmic region significantly increased (0.584 ± 0.04 to 0.638 ± 0.08 AU; p = 0.01) while larger lipid droplets significantly decreased (p < 0.05). GLUT4 mRNA tended to increase (p = 0.05). There were no significant changes in GLUT 4, perilipin 3, and perilipin 5 protein levels. CONCLUSION: The study demonstrates that exercise may impact metabolism by enhancing the quantity of smaller lipid droplets over larger lipid droplets.


Asunto(s)
Gotas Lipídicas , Perilipina-5 , Masculino , Humanos , Adulto Joven , Adulto , Perilipina-1/metabolismo , Gotas Lipídicas/metabolismo , Transportador de Glucosa de Tipo 4/metabolismo , Perilipina-5/metabolismo , Perilipina-3/metabolismo , Músculo Esquelético/fisiología , Lípidos , ARN Mensajero/metabolismo , Metabolismo de los Lípidos/fisiología
11.
Front Endocrinol (Lausanne) ; 14: 1144016, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37181035

RESUMEN

Background: Stromal adipocytes and tumor breast epithelial cells undergo a mutual metabolic adaptation within tumor microenvironment. Therefore, browning and lipolysis occur in cancer associated adipocytes (CAA). However, the paracrine effects of CAA on lipid metabolism and microenvironment remodeling remain poorly understood. Methods: To analyze these changes, we evaluated the effects of factors in conditioned media (CM) derived from explants of human breast adipose tissue from tumor (hATT) or normal (hATN) on morphology, degree of browning, the levels of adiposity, maturity, and lipolytic-related markers in 3T3-L1 white adipocytes by Western blot, indirect immunofluorescence and lipolytic assay. We analyzed subcellular localization of UCP1, perilipin 1 (Plin1), HSL and ATGL in adipocytes incubated with different CM by indirect immunofluorescence. Additionally, we evaluated changes in adipocyte intracellular signal pathways. Results: We found that adipocytes incubated with hATT-CM displayed characteristics that morphologically resembled beige/brown adipocytes with smaller cell size and higher number of small and micro lipid droplets (LDs), with less triglyceride content. Both, hATT-CM and hATN-CM, increased Pref-1, C/EBPß LIP/LAP ratio, PPARγ, and caveolin 1 expression in white adipocytes. UCP1, PGC1α and TOMM20 increased only in adipocytes that were treated with hATT-CM. Also, hATT-CM increased the levels of Plin1 and HSL, while decreased ATGL. hATT-CM modified the subcellular localization of the lipolytic markers, favoring their relative content around micro-LDs and induced Plin1 segregation. Furthermore, the levels of p-HSL, p-ERK and p-AKT increased in white adipocytes after incubation with hATT-CM. Conclusions: In summary, these findings allow us to conclude that adipocytes attached to the tumor could induce white adipocyte browning and increase lipolysis as a means for endocrine/paracrine signaling. Thus, adipocytes from the tumor microenvironment exhibit an activated phenotype that could have been induced not only by secreted soluble factors from tumor cells but also by paracrine action from other adipocytes present in this microenvironment, suggesting a "domino effect".


Asunto(s)
Adipocitos Blancos , Lipólisis , Humanos , Adipocitos Blancos/metabolismo , Tejido Adiposo/metabolismo , Metabolismo de los Lípidos , Adipocitos Marrones/metabolismo , Perilipina-1
13.
Int J Biol Sci ; 19(6): 1713-1730, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37063427

RESUMEN

BAP31 expression was robustly decreased in obese white adipose tissue (WAT). To investigate the roles of BAP31 in lipid metabolism, adipocyte-specific conditional knockout mice (BAP31-ASKO) were generated. BAP31-ASKO mice grow normally as controls, but exhibited reduced lipid accumulation in WAT. Histomorphometric analysis reported increased adipocyte size in BAP31-ASKO mice. Mouse embryonic fibroblasts (MEFs) were induced to differentiation to adipocytes, showed reduced induction of adipogenic markers and attenuated adipogenesis in BAP31-deficient MEFs. BAP31-deficiency inhibited fasting-induced PKA signaling activation and the fasting response. ß3-adrenergic receptor agonist-induced lipolysis also was reduced, accompanied by reduced free-fatty acids and glycerol release, and impaired agonist-induced lipolysis from primary adipocytes and adipose explants. BAP31 interacts with Perilipin1 via C-terminal cytoplasmic portion on lipid droplets (LDs) surface. Depletion of BAP31 repressed Perilipin1 proteasomal degradation, enhanced Perilipin1 expression and blocked LDs degradation, which promoted LDs abnormal growth and supersized LDs formation, resulted in adipocyte expansion, thus impaired insulin signaling and aggravated pro-inflammation in WAT. BAP31-deficiency increased phosphatidylcholine/phosphatidylethanolamine ratio, long chain triglycerides and most phospholipids contents. Overall, BAP31-deficiency inhibited adipogenesis and lipid accumulation in WAT, decreased LDs degradation and promoted LDs abnormal growth, pointing the critical roles in modulating LDs dynamics and homeostasis via proteasomal degradation system in adipocytes.


Asunto(s)
Adipogénesis , Lipólisis , Animales , Ratones , Adipogénesis/genética , Fibroblastos/metabolismo , Gotas Lipídicas/metabolismo , Lipólisis/genética , Obesidad/metabolismo , Triglicéridos/metabolismo , Perilipina-1/metabolismo
14.
Int J Mol Sci ; 24(4)2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36835359

RESUMEN

Body size is an important biological phenotypic trait that has attracted substantial attention. Small domestic pigs can serve as excellent animal models for biomedicine and also help meet sacrificial culture needs in human societies. Although the mechanisms underlying vertebral development regulating body size variation in domestic pigs during the embryonic period have been well described, few studies have examined the genetic basis of body size variation in post embryonic developmental stages. In this study, seven candidate genes-PLIN1, LIPE, PNPLA1, SCD, FABP5, KRT10 and IVL-significantly associated with body size were identified in Min pigs, on the basis of weighted gene co-expression network analysis (WGCNA), and most of their functions were found to be associated with lipid deposition. Six candidate genes except for IVL were found to have been subjected to purifying selection. PLIN1 had the lowest ω value (0.139) and showed heterogeneous selective pressure among domestic pig lineages with different body sizes (p < 0.05). These results suggested that PLIN1 is an important genetic factor regulating lipid deposition and consequently affecting body size variation in pigs. The culture of whole pig sacrifice in Manchu during the Qing Dynasty in China might have contributed to the strong artificial domestication and selection of Hebao pigs.


Asunto(s)
Tamaño Corporal , Perilipina-1 , Selección Genética , Porcinos Enanos , Transcriptoma , Animales , Humanos , Aciltransferasas/genética , Perilipina-1/genética , Perilipina-1/fisiología , Fosfolipasas , Tamaño Corporal/genética , Metabolismo de los Lípidos/genética , Porcinos Enanos/genética , Porcinos Enanos/crecimiento & desarrollo
15.
Int J Mol Sci ; 24(3)2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36768395

RESUMEN

Lipid droplets (LD) are organelles localized in the membrane of the endoplasmic reticulum (ER) that play an important role in many biological functions. Free LDs that have been released from the ER membrane and are present in the cytosol resemble an oil-in-water emulsion. The surface of an LD is coated with a phospholipid monolayer, and the core of an LD is composed of neutral lipids. Adipose differentiation-related protein (ADRP), also known as perilipin-2, is a protein that surrounds the LD, together with the phospholipid monolayer. ADRP molecules are involved in assisting in the storage of neutral lipids within LDs. In this article, we focus our interest on the influence of ADRP molecules on the 3D shape of bilayer-embedded LDs and the diffusion of phospholipids in the monolayer covering LDs. For this study, we employed two different microfluidic setups: one to produce and explore bilayer-embedded LDs and a second one to mimic the surface of a single LD. Using the first setup, we demonstrate that ADRP molecules stay preferentially localized on the surfaces of bilayer-embedded LDs, and we study their 3D-shape in the presence of ADRP. Using the second setup, we performed FRAP experiments to measure the phospholipid diffusion on a model LD surface as a function of the ADRP concentration. Although the presence of proteins on the LD surface minimally affects the phospholipid and protein motility, ADRP appears to have a significant effect on the 3D structure of LDs embedded in the bilayer.


Asunto(s)
Gotas Lipídicas , Metabolismo de los Lípidos , Gotas Lipídicas/metabolismo , Perilipina-2/metabolismo , Retículo Endoplásmico/metabolismo , Fosfolípidos/metabolismo , Perilipina-1/metabolismo
16.
J Dairy Sci ; 106(3): 1650-1671, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36710193

RESUMEN

Naturally forming benzoic acid in fermented dairy products accumulates in organisms and biomagnifies through collateral transport. The association between benzoic acid agglomeration and susceptible lipid nutrients remains obscure. Horizontal analysis of lipidomic alteration in response to benzoic acid was conducted and the spatially proteomic map was constructed using label-free quantitative proteomics. From synergistic integration of multi-omics in benzoic acid accumulated fermented goat milk model, the biological processes of significant proteins mostly focused on glyceride-type polyunsaturated fatty acids degradation (143.818 ± 0.51 mg/kg to 104.613 ± 0.29 mg/kg). As a physiological barrier shield, perilipin, which is coated on the surface of lipid droplets, protects triacylglycerols from cytosolic lipases, thus preventing triglyceride hydrolysis. The expression of perilipin decreased by 90% compared with the control group, leading to the decrease of triglycerides. Benzoic acid suppressed phosphatidylethanolamines and phosphatidylcholines synthesis by attenuating choline phosphotransferase and ethanolamine phosphotransferase. Less diglyceride generated by the dephosphorylation of phosphatidic acid entered choline phosphotransferase and ethanolamine phosphotransferase-mediated glycerophospholipid metabolisms. Fermentation of goat milk at a low temperature and less incubation time leads to the production of less benzoic acid and mitigation of lipid nutrient loss. The present study delineated the molecular landscape of fermented goat milk containing endogenous benzoic acid and further dissected the trajectory guiding lipid alteration to advance control of benzoic acid residue.


Asunto(s)
Ácido Benzoico , Proteómica , Animales , Fermentación , Perilipina-1/metabolismo , Glicéridos , Triglicéridos/metabolismo , Ácidos Grasos Insaturados , Fosfotransferasas/metabolismo , Cabras/metabolismo , Etanolaminas , Colina , Perilipina-2/metabolismo
17.
Diabetes ; 72(1): 59-70, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-35709010

RESUMEN

Acquired lipodystrophy is often characterized as an idiopathic subtype of lipodystrophy. Despite suspicion of an immune-mediated pathology, biomarkers such as autoantibodies are generally lacking. Here, we used an unbiased proteome-wide screening approach to identify autoantibodies to the adipocyte-specific lipid droplet protein perilipin 1 (PLIN1) in a murine model of autoimmune polyendocrine syndrome type 1 (APS1). We then tested for PLIN1 autoantibodies in human subjects with acquired lipodystrophy with two independent severe breaks in immune tolerance (including APS1) along with control subjects using a specific radioligand binding assay and indirect immunofluorescence on fat tissue. We identified autoantibodies to PLIN1 in these two cases, including the first reported case of APS1 with acquired lipodystrophy and a second patient who acquired lipodystrophy as an immune-related adverse event following cancer immunotherapy. Lastly, we also found PLIN1 autoantibodies to be specifically enriched in a subset of patients with acquired generalized lipodystrophy (17 of 46 [37%]), particularly those with panniculitis and other features of autoimmunity. These data lend additional support to new literature that suggests that PLIN1 autoantibodies represent a marker of acquired autoimmune lipodystrophies and further link them to a break in immune tolerance.


Asunto(s)
Lipodistrofia Generalizada Congénita , Lipodistrofia , Humanos , Animales , Ratones , Perilipina-1/metabolismo , Autoanticuerpos , Lipodistrofia Generalizada Congénita/metabolismo , Lipodistrofia Generalizada Congénita/patología , Lipodistrofia/metabolismo , Tejido Adiposo/metabolismo
18.
J Atheroscler Thromb ; 30(2): 170-181, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-35662076

RESUMEN

AIM: Perilipins (PLINs), peripheral lipid droplet (LD) proteins, play important roles in lipid accumulation and maturation in adipocytes. The relationship between PLIN family proteins and macrophage polarization in atherosclerosis has not been elucidated. METHODS: The experiments used tissues from human arteries of 65 patients who had undergone a carotid endarterectomy, and cultured macrophages generated from healthy human peripheral blood mononuclear cells. RESULTS: Plaque immunohistochemistry demonstrated co-expression of PLIN1 and PLIN2 in both symptomatic (n=31) and asymptomatic patients (n=34). PLIN2 mRNA expression increased 3.38-fold in the symptomatic group compared with those from asymptomatic. PLIN1 was not expressed on small LDs at a shorter incubation but was on large LDs at longer incubation with oxidized LDL and VLDL, while PLIN2 was observed after 24 h and increased with a longer incubation in cultured M1 macrophage. In M2 macrophages, PLIN1 was seen as early as 24 h following incubation with VLDL, and LD size increased with longer incubation. PLIN1 overexpression increased the size of LDs in M1 macrophages, even after a short incubation, and reduced the RNA expression of TNFA, MMP2, ABCA1, and ABCG1 versus the M1 control. Conversely, silencing of PLIN1 in M2 macrophages had the opposite effects on LD size and RNA expression. CONCLUSION: There was a relationship between macrophage polarity, cytosolic LD size, and PLIN1/PLIN2 expression levels. PLIN2 was mainly expressed in arterial plaques in symptomatic stroke patients, and associated with the inflammatory phenotype of human macrophages, while PLIN1 expression is closely associated with plaque stability and the anti-inflammatory phenotype.


Asunto(s)
Placa Aterosclerótica , Humanos , Placa Aterosclerótica/metabolismo , Gotas Lipídicas/metabolismo , Leucocitos Mononucleares/metabolismo , Macrófagos/metabolismo , Perilipina-2/genética , Perilipina-2/metabolismo , Lípidos , ARN/metabolismo , Perilipina-1/genética , Perilipina-1/metabolismo
19.
Diabetes ; 72(1): 71-84, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-35771980

RESUMEN

Acquired generalized lipodystrophy (AGL) is a rare condition characterized by massive loss of adipose tissue through the body, causing severe metabolic complications. Autoimmune destruction of adipocytes is strongly suspected based on the frequent association of AGL with autoimmune disorders. In 2018, autoantibodies against perilipin 1 (PLIN1) were identified in three patients with autoimmune-associated AGL. However, the pathogenic mechanism and clinical impact of anti-PLIN1 remain unsolved. The prevalence of anti-PLIN1 autoantibodies in an AGL cohort of 40 patients was 50% (20 of 40). Among positive patients, 10 had the autoimmune variety and 10 had panniculitis-associated AGL. The IgG isotype was predominant, although some IgM antibodies were detected. Epitope-mapping studies did not identify a single, major epitope. Instead, autoantibodies typically bound to several different peptides, among which the central (233-405) domain was detected in all antibody-positive patients, for both IgG and IgM autoantibodies. In-depth epitope mapping indicated that anti-PLIN1 autoantibodies predominantly recognize the αß-hydrolase domain containing 5 (ABHD5) binding site (383-405). Autoantibodies dose-dependently blocked the binding of PLIN1 to ABHD5 and caused a dislocation of ABHD5 toward the cytosol, leading to an increase in lipolysis and lipase activities. Finally, anti-PLIN1 titers significantly correlated with the amount of fat loss, metabolic control impairment, and severity of liver injury. Our data strongly support that anti-PLIN1 autoantibodies are a diagnostic biomarker and a cause of lipodystrophy in patients with AGL.


Asunto(s)
Lipodistrofia Generalizada Congénita , Lipodistrofia , Humanos , Perilipina-1/metabolismo , Lipodistrofia Generalizada Congénita/complicaciones , Autoanticuerpos/metabolismo , Lipodistrofia/metabolismo , Inmunoglobulina G/metabolismo , 1-Acilglicerol-3-Fosfato O-Aciltransferasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA